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Abstract

Wood-based light-weight I-beams are today widely used in the construction industry.
An important feature of these beams is that the user can make holes in the web
where needed. Today there is no general method used to calculate the reduced
strength of these beams with a hole in the web. The calculation methods vary
between the manufacturers and are commonly based on empirical results. The aim
of this master’s thesis was to create finite element models of this type of beams
and with these investigate the stress distribution in beams with holes in the web,
where a crack would likely occur and in what direction it will grow. The aim was
furthermore to calculate the shear force capacity for beams with holes by use of
different models based on fracture mechanics theory, as well as investigate how
changes in the material properties influence the shear force capacity, and finally to
evaluate the currently used calculation methods and suggest improvements or a new
method.

Calculations showing the location of the most stressed point and the orientation
of the principal stresses in an area surrounding this point were performed for a
number of load cases. For load cases dominated by shear force the results indicated
diagonal cracking in 45◦ direction. The load cases with pure normal or moment
loading indicated fracture in the upper or lower edge of the hole. Furthermore, the
calculated stresses indicated that a crack would both initiate and continue to grow
along an approximately straight line perpendicular to the edge of the hole.

Three methods based on fracture mechanics were used in the finite element
calculations of the shear force capacity; the point stress criterion, the mean stress
criterion and the initial crack criterion. The calculated shear force capacity from
these methods was compared to the shear force capacity gained in a previously
performed test study. In this study 11 beam geometries were tested, and to be able
to compare the calculations, the same geometries and load cases were used in the
present study. The results show that the mean stress criterion and the initial crack
criterion are suitable for shear force capacity calculations for beams with holes in
the web. The point stress criterion severely underestimated the shear force capacity
for some beams. The calculation method used by the manufacturers Swelite and
Forestia was evaluated by comparing the results from the test study with the results
from using this method. This comparison showed that this method overestimated
the real shear force capacity for one beam. A new calculation method can be based
on the mean stress criterion, since this method gave values well corresponding to
the results from the test study and since this is a fairly easy method to use.
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Sammanfattning

Träbaserade lättbalkar är idag vanligt förekommande i byggnadsindustrin. En viktig
egenskap hos dessa balkar är att användaren kan göra h̊al i livet där det behövs,
för installationer eller liknande. Idag finns det dock ingen allmänt använd metod för
att beräkna den reducerade tvärkraftskapaciteten för dessa balkar med h̊al i livet.
Beräkningsmetoderna varierar mellan de olika tillverkarna och är vanligtvis baserade
p̊a empiriska resultat. Syftet med detta examensarbete var att skapa finita element-
modeller av denna typ av balk och med dessa undersöka spänningsfördelningen i
balkar med h̊al i livet, samt var en spricka troligtvis uppkommer och i vilken riktning
den sedan växer. Syftet var vidare att beräkna tvärkraftskapaciteten för balkar med
h̊al med hjälp av olika modeller baserade p̊a brottmekanik, samt att undersöka hur
förändringar av de ing̊aende materialens egenskaper p̊averkar tvärkraftskapaciteten,
och slutligen utvärdera nuvarande beräkningsmetoder samt föresl̊a förbättringar
eller en ny metod.

Beräkningar som visade läget för den mest ansträngda punkten och huvud-
spänningarnas orientering i ett omr̊ade runt denna punkt gjordes för ett antal olika
lastfall. För lastfall dominerade av tvärkraft indikerade resultaten diagonal sprick-
bildning i 45◦-riktning. Belastning med enbart normalkraft eller moment indikerade
brott i h̊alets övre eller undre kant. Beräknade spänningar indikerade vidare att en
brottspricka b̊ade initieras och sedan fortsätter att propagera ungefär längs en rak
linje vinkelrätt mot h̊alets kant.

Tre metoder baserade p̊a brottmekanik användes i finita elementberäkningarna
av tvärkraftskapaciteten; punktspänningskriteriet, medelspänningskriteriet och ini-
tialsprickakriteriet. Den beräknade tvärkraftskapaciteten fr̊an dessa metoder jäm-
fördes med tvärkraftskapaciteten fr̊an tidigare provningar av 11 olika balkgeometrier,
och för att göra beräkningarna jämförbara användes samma geometrier och lastfall i
denna studie. Resultaten visade att medelspänningskriteriet och intialsprickakriteri-
et är lämpliga för beräkning av den reducerade tvärkraftskapaciteten hos balkar med
h̊al i livet. Punktspänningskriteriet underskattade tvärkraftskapaciteten kraftigt för
n̊agra balkar. Beräkningsmetoden som används av de tv̊a nordiska tillverkarna Swelite
och Forestia utvärderades genom jämförelse mellan resultat fr̊an provningarna och
resultat fr̊an denna metod. Denna jämförelse visade att beräkningsmetoden över-
skattade den verkliga tvärkraftskapaciteten för en balk. En ny beräkningsmetod
föresl̊as baseras p̊a medelspänningskriteriet, d̊a denna metod gav värden som väl
överrensstämde med resultaten fr̊an provningarna, samt d̊a denna metod är tämligen
enkel att använda.
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Chapter 1

Introduction

1.1 Background

Wood-based light-weight I-beams, also known as I-joists, are today widely used and
accepted in the construction industry around the world. The beams are mainly used
in floors, roofs and walls in residual buildings, and also to some extent in commercial
constructions [8]. There are a number of manufacturers of wood-based light-weight
I-beams on the Nordic market, for example the Swedish manufacturer Swelite, the
Norwegian Forestia and the Finnish FinnForest.

The wood-based light-weight I-beams have many advantages. The beams have
high stiffness and strength, low weight and are useful for long spans. Furthermore,
compared with other building materials, they are environmentally beneficial. The
wood material also allows for the user to easily cut the beam into proper dimensions
and to cut holes in the web where needed [8] [1]. Figure 1.1 shows an I-beam with
a hole in the web.

Figure 1.1: Wood-based light-weight I-beam.
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2 CHAPTER 1. INTRODUCTION

When cutting a hole in the web, the manufacturers recommendations must be
followed. The recommendations for making holes in webs differ between the man-
ufacturers. Some manufacturers deliver the beams with pre-cut holes at certain
locations, and do not allow for more holes over a certain diameter to be cut in the
web [7]. Other manufacturers give equations or tables for calculating the reduced
shear capacity after cutting holes in the web [15] [5]. There are no consistent meth-
ods used all over the construction industry for taking the impact of holes in the web
into consideration. Today the user of the beams has to follow the guidelines of the
particular manufacturer and these guidelines are commonly based on empirical data
from beam tests.

1.2 Objectives

The objectives of this master’s thesis are to:

• Create finite element models of wooden I-beams and investigate the stress dis-
tribution, the location for crack initiation as well as the crack growth direction
for beams with holes in the web.

• Perform calculations with various fracture mechanics methods. These will be
compared to results from beam tests in order to investigate how accurately
they estimate the beams’ strength.

• Investigate different material parameters’ influence on the strength of the
beams.

• Evaluate the methods recommended by the Nordic manufacturers for calcu-
lating the reduced shear capacity for I-beams with holes and suggest improve-
ments or a new calculation method.

1.3 Limitations

In a previous report, Morris et al. [11] suggest that for a beam with a hole, failure
will initiate where the stress at the edge of the hole exceeds the maximum stress
capacity, and therefore, this report will be focused on failure in the web. The mode
of fracture is furthermore assumed to be of type I, the opening mode, see Section
2.4. This corresponds to the assumption of isotropic properties of the web material.
This material is assumed to be linear elastic. Possible influences of geometrical
instabilities and large non-linear deformations are not considered in the present
study. Neither is possible influences from climatic variations or long duration of
loading considered.
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1.4 Audience

To fully comprehend this thesis, some knowledge in structural mechanics, the finite
element method and wood is required, but most important is a keen interest in
wood-based building materials and their features.

1.5 Methodology

First the stress distribution and possible crack direction in beams with cut holes
were investigated by modeling beams with different hole diameters and applied load
cases in a finite element program. The program used was ABAQUS 6.5. The results
from this investigation were used in the next step, where certain beams were modeled
and analyzed with respect to strength. The beams analyzed had the same geome-
try and type of loading as the beams tested in a previous experimental study [14].
The calculations were performed for three different criteria, that were established by
studying fracture mechanics theories. The results from the calculations were evalu-
ated and the influences from the material parameters were studied. The final task
was to evaluate the calculation methods recommended by the Nordic manufacturers
and suggest improvements or other calculation methods that would better describe
the true shear force capacity for wooden I-beams with cut holes. The plots in this
thesis were made with MATLAB 7.0.4 and the report was written with LATEX2ε.

1.6 Disposition

Chapter 2 includes the theory used in this study. The current calculation methods
recommended by the Nordic manufacturers are brought to attention, as well as the
fracture mechanics theories and the material properties that will be used in the
calculations in the following chapters.

Chapter 3 is focused on the stress distribution and probable direction of crack
growth in beams with holes. In this chapter finite element calculations are performed
for beams with three hole diameters and for a range of load cases.

Chapter 4 deals with calculations of the shear force capacity for different beams
with holes. These calculations were performed for three different criteria, that were
described in Chapter 2.

In Chapter 5 the results from the use of the three criteria are evaluated. An ad-
ditional parameter study is conducted, where the focus is on the material properties
and the effect changes of these have on the shear force capacity. This chapter also
includes an evaluation of the current calculation methods with respect to the results
in Chapter 4 and suggestions for improving these calculation methods.

In Chapter 6 some conclusions are drawn and suggestions for future research are
given.
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Chapter 2

Theory

2.1 Wood-based light-weight I-beams

There are numerous manufacturers of wood-based light-weight I-beams, and they
offer a range of web and flange materials and many different methods for calculating
the shear capacity of beams with holes in the web. Georgia-Pacific produces an
I-beam with a web made of Oriented Strand Board (OSB) with three pre-cut holes
[7]. The Finnish manufacturer FinnForest produces an I-beam with a system of
pre-made holes (knock-outs) in the web with a diameter of 38 mm and a distance
between the holes of 300 mm. The web is made of OSB-board and the flanges of
Laminated Veneer Lumber (LVL) [4]. The Swedish manufacturer Swelite produces
a beam with a web made of 8 mm thick High Density Fibre Board (HDFB) and
flanges made of solid wood [15]. The Norwegian manufacturer Forestia produces
an I-beam with a web made of particle board and flanges made of solid wood [5].
Figure 2.1 shows one of the light-weight wood-based I-beams that Swelite offers to
the market.

Figure 2.1: One of Swelite’s light-weight wood-based I-beams [9].
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6 CHAPTER 2. THEORY

2.2 Current calculation methods

This master’s thesis will focus on the calculation methods suggested by the two
Nordic manufacturers Swelite and Forestia. These two manufacturers do not provide
pre-cut holes in the beams, but equations to take the reduced capacity of beams with
cut holes into consideration. The Finnish manufacturer FinnForest’s calculation
method is not included, since this method is not comparable with those from Swelite
and Forestia. However, FinnForest’s calculation method will be brought to attention
and its comparability will be discussed in the following section.

2.2.1 FinnForest

The Finnish manufacturer FinnForest produces an I-beam named Finnjoist I-joist
that is provided with knock-out holes of diameter 38 mm and a 300 mm spacing
between the centers of these holes. Additional holes can be cut in the web if certain
restrictions are followed. The reduced characteristic shear force capacity Vk,hole is
then calculated with Equation 2.1 [4]. Figure 2.2 shows the cross-section of Finnjoist
I-joist [4].

Figure 2.2: Cross-section of Finnjoist I-joist. Figure adopted from [4]

Vk,hole = 1.1kholeVk ≤ Vk (2.1)

where Vk is the characteristic shear capacity for the beam without the additional
hole. The reduction factor khole is calculated with Equation 2.2 [4].

khole =
hw + hf − kshapehhole − 38k

hw,eff − 38
, 0 ≤ khole ≤ 1 (2.2)
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where hw is the depth of the web and hf is the flange depth. The factor kshape is
1 for circular holes and 1.23 for rectangular holes and hhole is the diameter in case
of a circular hole and the largest side of the hole in case of a rectangular hole. The
factor hw,eff is calculated with Equation 2.3 and the factor k with Equation 2.4 or
Equation 2.5 [4]. The thickness of the web is denoted bw and H is the total height
of the beam.

hw,eff =
35bw

hw

(hw + hf) ≤ hw + hf (2.3)

For H ≤ 212 m: k =
250 − H − hhole

76
, 0 ≤ k ≤ 1 (2.4)

For H ≥ 212 m: k =
H − hhole − 174

76
, 0 ≤ k ≤ 1 (2.5)

Holes with a diameter larger than 20 mm must be placed in the center of the web.
The length between the edges of two holes should be no less than twice the diameter
of the largest hole. If not, the two holes should be considered as one elongated hole
[4]. However, since the distance between the knock-outs is 300 − 2 · 38

2
= 262 mm,

the maximum allowed diameter of a hole placed between two knock-outs is 52.4 mm.
Since only one beam from the tests used for comparison (see Section 4.1) had a hole
diameter less than 52.4 mm, FinnForest’s method for calculating the reduced shear
force capacity is not suitable for comparison with the results from the calculation
in the following chapters.

2.2.2 Swelite

The Swedish manufacturer Swelite uses an equation for calculating a reduction fac-
tor k, which reduces the shear capacity for beams with cut holes. Swelite also gives
certain restrictions for how and where holes can be cut in the web. The distance
between the edge of a hole and the support should be no less than the total depth,
H , of the beam, see Figure 2.3. The same minimum distance should be used between
the edges of two holes. Furthermore, the diameter, d, of the hole should be less than
the depth of the web, hw. All holes with a diameter d larger than 20 mm must be
placed in the center of the depth of the web. Holes with smaller diameters can be
placed at any position in the web, as long as the distance to the edge of another hole
or to the support is at least 40 mm. The characteristic shear capacity Vk,hole, in the
cross section at the center of the hole can be calculated with Equation 2.6 and Equa-
tion 2.7, based on the characteristic shear capacity of the beam without any hole, Vk.
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Vk,hole = Vk · k (2.6)

k =
H − hf − 0.9d

H − hf

(2.7)

where hf is the depth of the flange.
Swelite’s equations also apply for beams having rectangular holes, if the depth

of the beam is less than 250 mm and the holes have corner radii of at least 20 mm.
The width of a rectangular hole, w, should be less than the depth of the web, hw,
and the depth of the hole, h, should be less than half the depth of the web. If
these requirements are fulfilled Equation 2.6 and Equation 2.7 still apply, with the
difference that the diameter d is substituted with the largest of the sides of the hole
[15].

Figure 2.3: Dimensions for Swelite’s beams (figure was adopted from Swelite’s rec-
ommendations) [15].

2.2.3 Forestia

The Norwegian manufacturer Forestia uses the same equations as Swelite, Equation
2.6 and Equation 2.7, for their beams Rantibjelken, for calculating the character-
istic shear capacity for beams with holes. Their restrictions are though somewhat
different. Rectangular holes can have a maximum depth (h) equal to the depth of
the web, hw, under the condition that the width of the hole, w, is less then 150
mm. Furthermore, the characteristic shear capacity, Vk, in the section where the
rectangular hole occurs should never exceed 4 kN [5].

2.3 Beam failure

Failure in the wood-based light-weight I-beams loaded in shear with transversal
supports of the flanges can be caused not only by fracture in the web material,
but also by buckling of the web and fracture along the web to flange adhesive joint
[11]. Web buckling will only effect the capacity of HDFB beams when the ratio
hw/bw ≥ 35 [11] according to the Swedish code of practice and EC5, where hw is the
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depth of the web and bw is the thickness of the web. With a web thickness of 8 mm,
this results in a depth of the beam of at least 280 mm. Most beams used in this
study have a depth of 220 mm, (see Chapter 3 and Chapter 4 for further information
about used beams) and therefore, buckling will not be investigated further. Since
Morris et al. in a previous report [11] suggest that failure in beams with holes will
initiate in the web, fracture along the web to flange adhesive joint will neither be
investigated.

Additionally, failure in the web needs to be defined precisely. Previous beam
tests [14] showed that beams with holes will have cracks running from the edge of
the hole to the web to flange joint on both the upper and lower side of the hole, after
complete failure. This raises the question of how to define failure in the web. Should
failure be considered as crack growth on one side or on both sides of the hole? If a
crack starts to grow in the weakest point at the edge of the hole, the area over which
to distribute the stresses on this side of the hole will be smaller. Thus, the stresses
on the other side of the hole will increase and this can lead to crack initiation and
growth on the other side of the hole. The increased magnitude of the stress on the
other side of the hole results in a lower failure load needed for the second crack to
initiate. Thus, the initiation of the first crack in the weakest point will decrease the
failure load needed for initiation of the second crack on the other side of the hole,
and therefore failure in the web will be defined as crack growth in the part with the
weakest point throughout the rest of this master’s thesis.

2.4 Fracture Mechanics

To calculate the shear force capacity of a beam with a hole in the web, different
methods based on fracture mechanics can be used. Three methods will be used in
this study and these will be described in this section. Two of them are based on
linear elastic fracture mechanics theory (LEFM) and they are described by the fol-
lowing criteria: The point stress criterion, the mean stress criterion and the initial
crack criterion [11]. The point stress criterion is conventional and widely used. The
mean stress criterion and the initial crack criterion are more general methods and
with these it is possible to study the influence from the material’s strength, stiffness
and fracture energy on the shear capacity of the beam [11]. The stress along a crack
is small compared to the stress perpendicular to the crack, which is causing the
crack to grow. Because of this the tensile strength of the web material, ft, will be
used throughout this study to determine the shear force capacity. The failure mode
is thus assumed to be of type I; the opening mode, see Figure 2.4 [10]. For mode
I, which is the most common failure mode in an isotropic material, the loads are
applied normal to the crack plane.
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Figure 2.4: The three types of failure mode [10].

2.4.1 The point stress criterion

The point stress failure criterion is a well-known and conventional approach [11] and
it is based on Equation 2.8.

σ1,max = ft (2.8)

where ft is the tensile strength of the material, σ1,max is the maximum of σ1 in the
vicinity of the hole and σ1 is the first principal stress. When using this criterion
to determine the shear force capacity of a beam, a crack is assumed to initiate in
the most stressed point in the web and this crack initiation is furthermore assumed
to give immediate failure of the beam. The load on the beam, Pf , causing a stress
with the same magnitude as the tensile strength of the material, ft, can easily be
calculated if a load P is known to give the stress σ1,max, see Equation 2.9.

Pf =
ftP

σ1,max

(2.9)

For beams with holes in the web, the most stressed point in the web will be
somewhere at the edge of the hole. The point stress criterion has the advantage
that no actual crack needs to be modeled.

2.4.2 The mean stress criterion

With the mean stress failure criterion the mean stress of σ1 (the first principal stress)
over a certain length is used to calculate the failure load Pf , instead of the maximum
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stress. According to this method, crack growth will occur when the mean stress,
σ1,mean, exceeds the tensile strength of the material, ft. The assumed crack will
initiate in one of the two points with local maximum stress, σ1,max, at the edge of
the hole. Since the mean stress over a distance will be less than the maximum stress
over the same distance, the mean stress criterion will predict a failure load equal
to or larger than the failure load predicted by the point stress criterion [6]. The
length over which the mean stress is calculated is dependent on the web material.
For brittle materials this length is small. For constructions without any sharp initial
crack this failure criterion gives the same failure load as the point stress criterion,
if the material is very brittle and/or the absolute measures of the construction are
very large. For a construction made from a very brittle material with a sharp initial
crack the criterion gives a failure load equal to that obtained using Linear Elastic
Fracture Mechanics (LEFM). Using LEFM, the stress close to a sharp crack can be
described by Equation 2.10 and Figure 2.5 [10].

σy =
K1√
2πx

(2.10)

Figure 2.5: Stress distribution near a sharp crack, according to LEFM [10].

For an isotropic material subjected to plane stress the failure mode I stress in-
tensity factor is K2

I = EG, where E is the Young’s modulus and G is the mode I
energy release rate. Integrating Equation 2.10 over a distance x gives the resulting
force F .

F = bw

∫ x

0

σy(x)dx = bw

∫ x

0

√
EG

2πx
dx = 2bw

√
EG

2π

√
x (2.11)
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where bw is the thickness of the web. The mean stress over the distance x can
be calculated with Equation 2.12.

σ1,mean =
F

bwx
=

√
EG

2π

2√
x

(2.12)

A specific length x0 is chosen so that the mean stress (σ1,mean) over this length
equals the tensile strength ft of the material, and so that the energy release rate G
equals the fracture energy Gf . This gives Equation 2.13 [10].

ft =

√
EGf

2π

2√
x0

⇒ x0 =
2

π

EGf

f 2
t

(2.13)

After the mean stress over this length has been calculated, the failure load acting
on the beam can be calculated with Equation 2.14.

Pf =
ftP

σ1,mean

(2.14)

where P is the external load which by means of some stress calculation method, e g.
the finite element method, is known to give the mean stress σ1,mean. This method
also has the advantage that no crack needs to be modeled.

2.4.3 The initial crack criterion

With the initial crack criterion a crack in the beam is introduced, starting from the
point of the maximum of the first principal stress, σ1,max, at the edge of the hole.
The crack will have the initial length a0. The magnitude of a0 is derived so that the
failure load calculated from the initial crack criterion is the same as if calculated
with LEFM for an infinite plate in a homogenous stress state. The stress intensity
at the tip of the crack can be calculated with Equation 2.15 [6].

K1 = σ
√

πa0 (2.15)
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Equation 2.15 is analogous with Equation 2.10 for the mean stress criterion. By
replacing π in Equation 2.11 with π

2
, and x with a0, the length a0 can be derived

in the same way as the derivation of x0. The magnitude of a0 will then be half the
magnitude of x0 [6].

a0 =
x0

2
(2.16)

When using the initial crack criterion in a finite element program, crack growth
can be simulated by performing calculations for two cracks with different lengths. By
simplification, the crack can be modeled according to Figure 2.6. This will result
in a very sharp modeled crack that is not consistent with the geometry of a real
crack tip. The real crack will be a distance xa shorter then the modeled crack for
four-node elements. Gustafsson [6] suggests that a reasonable assumption for the
magnitude of the distance xa is half the side length of the finite elements along the
modeled crack. For the second calculation one node in the tip of the modeled crack
will be opened and the crack will thus become one element side length longer. The
real crack will grow the same length, but will still be xa shorter then the modeled
crack.

If xa is equal to half the length of an element side, the length of the first modeled
crack should be the same as a0. Then the mean value of the crack lengths for the
two real cracks, a1 and a2, will be the same as the length of the first modeled crack a0.

Figure 2.6: Modeled crack in relation to the real crack.

First the external work for the whole body, W , with the modeled crack of length
a0 is calculated, and then one node in the tip of the crack is opened to simulate crack



14 CHAPTER 2. THEORY

growth. The external work for the whole body is calculated with the new longer
crack, a0 + 2xa. With the difference in external work for the two crack lengths and
with the magnitude of these lengths, the energy release rate G can be calculated.
The energy release rate G during crack extension, mode I, when the beam is loaded
with a single load P can thus be expressed by Equation 2.17 [10].

G =
P 2

2bw

∂C

∂a
=

∂W

bw∂a
(2.17)

where C is the compliance and ∂W
∂a

for a = a0 is calculated with Equation 2.18.

∂W

∂a
� ΔW

Δa
=

W2 − W1

a0 + 2xa − a0

=
W2 − W1

2xa

(2.18)

With the energy release rate G calculated for the load P , and the fracture energy
Gf , the failure load Pf for the beam can be calculated with Equation 2.19.

P 2
f

P 2
=

Gf

G
⇒ Pf = P

√
Gf

G
(2.19)

2.5 Materials

The web material data used throughout this study is taken from a study by Morris et
al. [11]. In this study the properties of the material used in beams manufactured by
Masonite AB were examined. The web material was made from High Density Fibre
Board (HDFB), in-plane isotropic, with a density ρ = 950 kg/m3. The thickness
of the board, bw, was 8 mm. From the material tests the average tensile strength
ft = 30.0 MPa. Young’s modulus for the web E = 5748 MPa and Poisson’s ratio
v = 0.2 [11].

The fracture energy, Gf , for the web material was also tested by Morris et al. A
testing procedure for determining the fracture energy for tension perpendicular to
the grain, (i. e. failure mode I, see Section 2.4) was used [12]. With this method
a test specimen with a saw cut is tested during three-point bending by applying a
load at midpoint and having the specimen simply supported in both ends [12]. The
total work of fracture for two thicknesses, 40 mm and 80 mm, were calculated [11].
A small size effect was found, consistent with a previous study by Persson et al.
[13]. Persson et al. suggest that an extrapolated value to zero sample size can be
a relevant value for the real fracture energy [13]. The mean value of the total work
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of fracture for the sample with thickness 40 mm was 3623 J/m2 and for the 80 mm
sample 3752 J/m2. Thus, by extrapolation to 0 mm, the fracture energy Gf = 3494
J/m2 [11].

The Young’s modulus E for the flanges was set to 10 700 MPa in the direction
along the fibres and to 550 MPa in the direction perpendicular to the fibres [2].
According to Burström [2] this is the properties for spruce. Poisson’s ratio v for
the flanges where set to 0.25 [3]. In Table 2.1 all material properties used in the
FE-calculations in this thesis are summarized.

Table 2.1: The material parameters used in the FE-calculations.
Web Material (HDFB) Flange Material (spruce)

ft 30.0 MPa E// 10700 MPa
E 5748 MPa E⊥ 550 MPa
v 0.20 v⊥ 0.25



Detta är en tom sida!



Chapter 3

Stress distribution and crack
location and orientation

This chapter deals with the distribution of stresses and the location and magnitude
of the first of the maximum principal stress (σ1,max) in I-beams with holes subjected
to pure normal, shear and moment cross section forces. Stress images are presented
to visualize how σ1,max is distributed in the beams for simple load cases. Some
calculations will also be presented for load combinations to examine what influence
different forces have on the total stress distribution in the beam. This will be used
when making assumptions on where a crack will initiate and in what direction it
will grow for different combined load cases.

3.1 The model

The geometrical model used to calculate the stress distribution had dimensions
according to Figure 3.1 below. The thickness of the web, bw, was set to 8 mm and
the thickness of the flanges, bf , to 47 mm. Swelite produces beams with this cross
section and Forestia’s Rantibjelken is also produced with the same cross section,
except for the web thickness, which is 10 mm instead of 8 mm. The length of the
beam was set so that the influence from the concentrated loads applied in the end
of the beam would not affect the stress distribution in the area around the hole.
According to Swelite’s directives, the distance from the edge of a hole to a support
should be no less then the depth of the beam, H [15]. Therefore, the total length of
the beam models has been set to three times the depth of the beam. The calculations
were performed for three different hole diameters d: 40.0, 63.0 and 94.5 mm. The
holes were placed in the center of the beams during all calculations. The web and
the flanges were modeled with material properties according to Section 2.5.

The beam was modeled with two-dimensional plane stress elements in ABAQUS.
The web was made isotropic and the flanges were given the elastic type lamina, since
they were made of solid wood and hence, were orthotropic. To achieve boundary
conditions according to beam theory at the end of the beam and to enable simple

17
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Figure 3.1: Dimensions of the beam used to produce stress images.

applications of normal, shear and bending moment loading, kinematic coupling con-
straints in ABAQUS were used to constrain the motion of the nodes in the beam
ends to single points at the center of each end, respectively. These points, or nodes,
each have three degrees of freedom; horizontal, vertical and rotation, correspond-
ing to normal force, shear force and bending moment. The motion of the left end
was constrained to zero in all directions. Loads were applied as concentrated forces
and/or bending moments to the center point at the right end, in order to achieve
the desired stresses in the beam.

In order to generate a suitable mesh, the beam was partitioned according to
Figure 3.2. In the green areas in Figure 3.2, a structured meshing was used, and in
the pink areas a free meshing technique with advancing front was used. Square, first
order elements only were used for all beams and the element length in the area sur-
rounding the hole (the pink area and the green inner circle) was set to approximately
1 mm. The remaining areas were meshed with an approximate element length of 3
mm. To visualize the meshes obtained, Figure 3.3 shows the mesh around the hole
with 40 mm diameter.

Figure 3.2: Partitioning of the beam.



3.2. PURE NORMAL, SHEAR AND MOMENT LOADING 19

Figure 3.3: The mesh around the hole.

3.2 Pure normal, shear and moment loading

First, beams subjected to pure normal, shear and moment loads were studied.

3.2.1 Method

To estimate where a crack would likely occur, the first principal stress, σ1, along a
path on the edge of the hole was calculated. For each element the stress was calcu-
lated in the corner points, i.e. the node points. The crack is most likely to initiate
in the point with the maximum σ1 (σ1,max) at the edge. At the edge the orientation
of the stress has the orientation of the edge. In order to estimate the direction of the
growing crack in the beam, σ1,max was also calculated for two other paths. These
paths form outer circles around the hole and are located approximately three mm
and eight mm outside the edge of the hole,respectively. This was performed in order
to investigate if σ1,max for these paths will occur at the same angles (see Figure 3.5)
as σ1,max for the edge of the hole, and thus in a position perpendicular to the edge
of the hole at the point with σ1,max at the hole edge. This would indicate that the
crack will grow in a direction perpendicular to the edge of the hole, since it is likely
that the crack growth will occur in the most stressed nodes. The Angle 1 and the
Angle 2 (see Figure 3.5 and Table 3.1) that indicate the location of the maximum
σ1 are calculated from the maximum σ1 that was found in the node-points, and are
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thus indicating the location of the node with the maximum σ1.
All forces were applied at the right end of the beam. To achieve a pure normal

force loading in the beam, a normal load of magnitude 1 · 10−6 N was applied to the
right end of the beam, pulling the beam horizontally. This was performed for the
three different hole diameters. The influence of shear loading was also examined for
the three hole diameters. To achieve pure shear force at the center of the hole, a shear
force and a moment were applied at the right end of the beam. The shear force had a
load of magnitude 1 ·10−6 N. The moment was added to eliminate the moment effect
caused by positioning the shear force at the end of the beam instead of at the center
of the hole. This moment had a magnitude of V ·L/2 = 1 · 10−6 · 660/2 = 330 · 10−6

Nmm, where V is the shear force and L is the total length of the beam in mm. To
achieve stress caused by pure moment load, a moment load of magnitude 1·10−6 N in
the negative direction was applied at the right end of the beam. Note however, that
for the calculations of Angle 1 and Angle 2 (see Figure 3.5) the absolute magnitude
of the forces is irrelevant for the results, while the ratios are of importance.

3.2.2 Results

The results from the calculations for beams subjected to pure normal and shear
force and moment, respectively, are shown in Table 3.1. The notation (N, V,M)
describes the cross section normal force, shear force and bending moment at the
center of the hole, as in Figure 3.4. For the normal force and shear force loading,
two maximum of the first principal stress σ1 will occur, one on the upper side of the
hole and one on the lower side. In Table 3.1, Angle 1 is the angle that indicates the
location of σ1,max on the upper side of the hole and Angle 2 σ1,max on the lower side
of the hole, as shown in Figure 3.5. The outer angles in Table 3.1 give the angles
to the outer paths around the hole, approximately three and eight mm outside the
edge of the hole, as mentioned earlier in Section 3.2.1. All angles are measured from
the horizontal.

Figure 3.4: Cross section forces and bending moment.
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Figure 3.5: The maximum of the first principal stress σ1,max occurs at the edge of
the hole in the direction indicated by Angle 1 and/or Angle 2.

Table 3.1: Location of maximum first principal stress, σ1,max, of the pure load cases.
N = Normal force, V = Shear force, M = bending Moment. The load combinations
are described with the notation (N,V,M), which relates to the forces acting in the
centre of the hole.

Load case Hole Angle 1 1st Outer 2nd Outer Angle 2 1st Outer 2nd Outer
(N, V, M) diameter Angle 1 Angle 1 Angle 2 Angle 2

[N, N, Nmm] [mm] [◦] [◦] [◦] [◦] [◦] [◦]

(1 0 0) 40.0 90.00 90.00 90.00 90.00 90.00 90.00
pure normal 63.0 89.34 84.40 90.52 90.00 90.00 90.00

force 94.5 90.00 90.00 90.00 90.00 90.00 90.00

(0 -1 0) 40.0 45.00 45.00 44.85 45.00 45.00 44.84
pure shear 63.0 44.86 44.86 44.85 44.84 44.84 44.84

force 94.5 46.15 45.00 45.00 46.15 45.00 45.00
(0 0 -1) 40.0 - - - 90.00 90.00 90.00

pure bending 63.0 - - - 90.00 90.00 90.00
moment 94.5 - - - 90.00 90.00 90.00

The stress distributions in the beams subjected to the pure normal force are
visualized in Figure 3.6. Figure 3.7 shows the stress distributions for the beams
subjected to the pure shear force and Figure 3.8 shows the stress distributions for
the beams subjected to stress from the bending moment.



22 CHAPTER 3. STRESS DISTRIBUTION AND CRACK LOCATION...

Figure 3.6: Distribution of σ1 in beams subjected to pure normal force loading.

Figure 3.7: Distribution of σ1 in beams subjected to pure shear force loading.
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Figure 3.8: Distribution of σ1 in beams subjected to pure moment loading.

3.2.3 Discussion

At pure shear force loading, the bending moment at the cross section of the hole is
zero. But the bending moment has a small non-zero value at the section where the
cracking will initiate, i. e. at the point where σ1 has its maximum at the edge of
the hole. The influence of this bending moment is however estimated to be small.

3.3 Combined load cases

In this section the locations of σ1,max and the direction of crack growth for combined
load cases will be investigated.

3.3.1 Method

The same method as for the pure load cases was used, with the exception that all
the load cases were calculated with the hole diameter of 63 mm. The used load cases
are described by the notation (N, V,M) in Table 3.2, where N is the normal force,
V is the shear force and M is the bending moment, in accordance with Figure 3.4.

To estimate the direction in which the crack will grow after initiation, besides
investigation of the location of σ1,max for two outer paths, symbol plots were studied.
In these plots the minimum principal stress, σ1,min, was plotted in the area with
the maximum principal stress σ1,max around the hole. If the arrows for σ1,min is
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approximately in a straight line from the location of σ1,max at the hole edge to the
location of σ1,max at the inner paths, the assumption that the crack will grow in this
direction can be made. Crack growth will likely occur in the direction perpendicular
to the maximum stress, hence, in the direction of the minimum stress.

3.3.2 Results

Table 3.2 shows the combined load cases that have been examined and the results
obtained for the angles indicating the maximum of the first principal stress at circular
paths around the hole. Stress distribution images for the different loading cases are
available in Appendix A.

Table 3.2: Location of maximum first principal stress, σ1,max, of the combined load
cases.

Load case Angle 1 1st Outer 2nd Outer Angle 2 1st Outer 2st Outer
(N, V, M) Angle 1 Angle 1 Angle 2 Angle 2

N, N, Nmm] [◦] [◦] [◦] [◦] [◦] [◦]

N/V = 0
(0 -1 -990) 52.75 52.74 54.30 40.19 40.19 37.10
(0 -1 -660) 49.60 49.59 51.15 41.73 41.73 40.19
(0 -3 -1320) 48.02 48.01 49.58 43.28 41.73 41.73
(0 -3 -770) 46.44 46.44 48.00 43.28 43.28 43.28
(0 -3 -660) 46.44 46.43 48.00 43.28 43.28 43.28
N/V = −1
(1 -1 -990) 54.33 54.32 55.88 41.73 41.73 38.64
(1 -1 -660) 51.18 51.03 52.73 43.28 43.28 41.73
(3 -3 -1320) 49.60 40.59 51.15 44.84 44.84 43.28
(1 -1 -330) 49.60 40.59 49.58 44.84 44.84 44.84
(3 -3 -770) 48.02 48.01 49.58 44.84 44.84 44.84
(3 -3 -660) 48.02 48.01 49.58 44.84 44.84 44.84
N/V = -1/3
(1 -3 -1320) 48.02 48.01 49.58 43.28 43.28 41.73
(1 -3 -770) 48.02 48.01 48.00 44.84 44.84 43.28
(1 -3 -660) 46.44 46.43 48.00 44.84 44.84 43.28
N/V = −3
(3 -1 -990) 57.49 57.48 59.03 44.84 44.84 43.28
(3 -1 -660) 55.91 55.90 55.88 46.39 46.39 44.84
(3 -1 -330) 52.75 52.74 54.30 47.95 47.95 47.95

From the symbol plots it was clear that the directions of σ1,min make a straight
line between the locations of σ1,max at the edge of the hole, and the locations of
σ1,max at the two outer paths. This is also visual in Figure 3.9, which shows an
example of a symbol plot visualizing σ1,min.
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Figure 3.9: The directions of σ1,min around the hole.

For the calculations performed in later chapters, it is of interest to examine
the influence normal and shear force and bending moment have on the angles to
the locations of σ1,max around the hole in the combined load cases. This can be
investigated by comparing the results from the load cases in Table 3.2. For this
reason, two graphs have been made, see Figure 3.10 and 3.11. Figure 3.10 describes
different load combinations’ influence on Angle 1 and Angle 2 and Figure 3.11 shows
the influence on the magnitude of σ1,max. The right hand side of the diagrams in
Figure 3.10 and 3.11 corresponds to shear force dominated loading. V/(M/H))/(1+
V/(M/H)) = 1 in the case of no bending moment, M = 0 and V/(M/H))/(1 +
V/(M/H)) = 0 in the case of no shear force, V = 0. In Figure 3.10 and 3.11 H is
the depth of the beams, which is 220 mm.
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3.4 Conclusions

The conclusions that can be drawn from the calculations in this chapter are, first
of all, that the location of the maximum of the first principal stress, σ1,max, around
the hole can differ significantly from 45◦, depending on the load combination. In the
calculations in the later chapters, it is therefore necessary to examine the location
of σ1,max around the hole for each load case. Secondly, the angles to the locations
of σ1,max at the two outer paths differ very little from the angle at the edge of the
hole. The differences occur because the maximum σ1 at the outer paths for some of
the beams is located one or two nodes away along the path from the node that gives
the same angle as for σ1,max for the edge of the hole. The differences of the stress
magnitudes in the outer paths in the nodes indicated by Angle 1 or 2 and in the
nodes indicated by Outer Angle 1 or 2, or Second Outer Angle 1 or 2, are small, and
can be considered insignificant to the total magnitudes of the stresses. From this
result the conclusion can be drawn, that the angles to the location of σ1,max along
circular paths around the hole are the same for the same load case, no matter if the
paths are right at the edge of the hole, or a few nodes from the edge. Furthermore,
from the results in Table 3.2 and from the symbol plots investigated, the conclusion
that the crack will grow at an angle perpendicular to the edge of the hole, can be
drawn.
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Chapter 4

Beam strength calculations by
means of three fracture criteria

The shear force capacities of beams with holes was calculated by use of the three
fracture mechanics criteria that were defined in Chapter 2. The calculations were
performed with the finite element method.

4.1 Beam geometries

The calculations involved 11 differently shaped beams. The geometries of the mod-
eled beams and the load situations that were analyzed were taken from a report
by Serrano [14], that contained results from laboratory tests of wooden I-beams
manufactured by Swelite. By using the same geometries and load situations, the
results from the FE-calculations can be compared with the results from the tests.
All beams except two had a depth H of 220 mm. These beams (d203 and d203x275)
had instead a depth H of 500 mm. All beams had a web thickness, bw, of 8 mm, a
flange thickness, bf , of 47 mm and a flange depth, hf , of 47 mm. The beams had
a total length of 11H and the free span had a length of 10H. The distance from
the edge of the hole to the left support was H mm as well as the distance between
the edges of the holes for the beams with two holes. For the square- and rectangle-
shaped holes, the corners where cut with a radius of 20 mm. The types of holes
used and their dimensions are included in Table 4.1, where L = L1 + L2. Figure 4.1
shows the beam geometries and the test setup.

29
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Figure 4.1: The setup for the previous performed tests [14].

Table 4.1: The analyzed beams. H = the height of the beam. d = the diameter of
the hole. h = the depth of the square- or rectangle-shaped hole. w = the base of the
square- or rectangle-shaped hole.

Beam H Hole type No. of holes d alt. h/w L L2 L2/L

[mm] [mm] [mm] [mm] [-]

d40 220 circular 1 40.0 2200 1720 0.78
d63 220 circular 1 63.0 2200 1697 0.77

d94.5 220 circular 1 94.5 2200 1666 0.76
d126 220 circular 1 126.0 2200 1634 0.74
d203 500 circular 1 203.0 5000 3797 0.76
d2x63 220 circular 2 63.0 2200 1414 0.64
d2x126 220 circular 2 126.0 2200 1288 0.59
d63x126 220 rectangle 1 63.0/126.0 2200 1634 0.74
d126x126 220 square 1 126.0/126.0 2200 1634 0.74
d126x275 220 rectangle 1 126.0/275.0 2200 1485 0.68
d203x275 500 rectangle 1 203.0/275.0 5000 3725 0.75

4.2 Converting point load to shear force

Later in this chapter the fracture loads Pf for beams supported and loaded according
to Figure 4.1 will be calculated using the three fracture criteria. When the fracture
loads have been calculated, they need to be converted into shear force capacities Vf .
This can be achieved by using Equation 4.1.

V1 = P
L2

L
(4.1)

where V1 = the shear force caused by the applied point load P and L = L1 + L2,
where L1 and L2 are visualized in the Figure 4.1. Table 4.1 shows the lengths L and
L2 and for all beams.
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4.3 Summary of results from beam tests

For the tests buckling of the flange was avoided during loading by including trans-
verse supports [14]. For each type of beam seven nominally equal beams were tested
and from these tests the average values of the failure load Pf and the shear force
capacity Vf were calculated. The results are summarized in Table 4.2, which also
includes the standard deviation for each type of beam. For most beams the failure
was caused by shear failure at the hole, though for some beams (d2x63, d2x126
and d126x126) failure was caused by a combination of shear failure at the hole and
failure at the flanges. The test study did not include investigation of the location
and direction of cracks around the hole.

Table 4.2: Average maximum point load Pf , average shear force capacity Vf and
standard deviation from tests.

Beam Pf Vf Std.dev.

[kN] [kN] [kN]

d40 28.2 22.0 2.1
d63 21.4 16.5 2.0

d94.5 16.0 12.1 0.8
d126 16.3 12.1 0.8
d203 33.2 25.2 1.0
d2x63 26.9 17.3 0.4
d2x126 20.0 11.7 1.1
d63x126 16.2 12.1 0.7
d126x126 14.1 10.4 0.7
d126x275 10.3 7.0 0.4
d203x275 16.2 12.1 0.9

4.4 Finite Element calculations

The beam geometries are described in Table 4.1 above. A distributed load with
a magnitude of 1 N/mm2 was applied to the beams at the position indicated by
Figure 4.1. It was distributed over an area of 50x47 mm2, hence, the applied load,
P, was 2.350 kN. The beams were modeled in ABAQUS, with the material properties
described in Chapter 2 and with the same type of elements as the beams of Chapter
3.

To imitate the boundary conditions and the applied load of the tests, a length
of 50 mm at each support was constrained in all directions to a single point in the
middle of this length, with coupling constraints. For the left support the movement
in this single point was then constrained to zero in the x- and y-direction, like a fixed
support, and for the right support the motion in the center point was constrained
to zero in the y-direction, consistent with a roller support.
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The beams were meshed in a similar manner as the beams in Chapter 3. For
the beams with a hole diameter d equal to the total depth of the web hw, triangular
elements were used in the area around the top and the bottom of the hole, where
the web area was very small. The partitioning and the meshes were similar to those
in Figure 3.2 and 3.3.

4.5 Location and growth direction for cracks

Before calculating the shear force capacities for the beams, the locations of the
maximum of the first principal stress σ1,max around the holes were calculated. For
each hole Angle 1 and Angle 2 (see Figure 3.5) from the center of the hole to σ1,max

at the edge of the hole for the upper part and the lower part of the hole are shown
in Table 4.3 below. All assumed cracks used in the calculations in the rest of this
chapter will initiate at the edge of the hole at the point where σ1,max occurs for the
upper or for the lower half of the hole. In line with the results from Chapter 3, the
cracks are then assumed to grow in a direction perpendicular to the edge of the hole.
For each of the three criteria used, an assumption has to be made about in which
part of the beam, at the upper part of the hole or at the lower part of the hole, the
crack will initiate and grow. For each criteria the part which gave the lowest values
of the calculated shear force capacity was used. The chosen part for each criteria is
discussed in their respective section below.

Table 4.3: The angles describing the locations of the maximum principal stresses at
the upper and lower edge of the hole.

Beam Left hole Right hole
Angle 1 Angle 2 Angle 1 Angle 2

[◦] [◦] [◦] [◦]

d40 44.02 45.00 - -
d63 42.19 45.00 - -

d94.5 42.80 47.19 - -
d126 41.33 45.92 - -
d203 41.82 49.09 - -
d2x63 43.59 46.41 40.78 47.81
d2x126 42.05 45.92 38.57 49.59
d63x126 47.44 52.09 - -
d126x126 34.99 44.98 - -
d126x275 45.00 47.81 - -
d203x275 47.74 47.74 - -
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4.6 The point stress criterion

4.6.1 Method

The shear force capacity was calculated with the point stress criterion by use of the
failure criterion σ1,max = ft (see Section 2.4.1), where ft = 30.0 MPa (see Section
2.5) and by determining the first principal stress σ1 in the nodes at the edge of the
hole. The largest of these stresses, σ1,max were used to calculate the failure loads Pf

for the beams as mentioned in Chapter 2. From these failure loads the shear force
capacities Vf for the beams could be calculated.

4.6.2 Results

In Table 4.4 the results from the use of the point stress criterion are shown. The
bold numbers indicate the part around the hole that had the largest of the two
σ1,max and thus the value of σ1,max that is used when calculating the failure load Pf .
Figure 4.2 below shows the difference between the test results in the previous study
[14], and the results from using the point stress criterion for the different beams.

Table 4.4: The results from the use of the point stress criterion.
Beam σ1,max for the load P [MPa] Pf Vf

Left hole Right hole [kN] [kN]
Upper Lower Upper Lower
part part part part

d40 5.54 5.52 - - 12.73 9.95
d63 5.84 5.84 - - 12.07 9.31

d94.5 6.49 6.51 - - 10.83 8.20
d126 7.13 7.12 - - 9.88 7.34
d203 2.79 2.81 - - 25.13 19.08
d2x63 4.97 4.88 4.90 4.99 14.13 9.08
d2x126 5.72 5.61 5.66 5.90 11.96 7.00
d63x126 9.50 9.74 - - 7.24 5.38
d126x126 12.03 12.57 - - 5.61 4.17
d126x275 17.26 18.15 - - 3.88 2.62
d203x275 7.48 7.48 - - 9.43 7.02
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Figure 4.2: The relationship between the shear force capacity from tests and the shear
force capacity obtained by the point stress criterion.

4.7 The mean stress criterion

4.7.1 Method

The length x0, over which to calculate the mean stress σ1,mean is determined with
the use of the material parameters from Section 2.5 and Equation 2.13.

x0 =
2

π

EGf

f 2
t

=
2

π
· 5748 · 106 · 3494

(30 · 106)2
= 0.0142 m = 14.2 mm (4.2)

For all beams except two, d126x126 and d126x275, the length x0 fitted within the
web. The first principal stress σ1 along the assumed crack path was calculated and
the mean stress over this path, σ1,mean, was determined by first integrating σ1 over
the distance x0 from the edge and then dividing the integration with the respective
distance from the edge of the hole, in accordance with Equation 4.3.

σ1,mean =
1

x0

∫ x0

0

σ1dx (4.3)
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This mean stress is then used to calculate the failure load Pf in accordance with
Chapter 2. The failure load Pf is then converted into the shear force capacity Vf .
Fracture occurs when σ1,mean = ft.

4.7.2 Results

The figures in Appendix B show the relationship between the distance x from the
edge of the hole and the mean stress calculated over this distance. In Table 4.5
below the results from the use of the mean stress criterion and the choice of crack
location are shown. The bold numbers indicate in which part the largest of the two
maximum mean stresses σ1,mean at distance x0 occurs, and thus the values used for
calculating the failure loads. Notice that for four beams the bold numbers do not
indicate the same part as did the point stress criterion, since the chosen assumed
crack location is in the part with the maximum mean stress σ1,mean at distance x0,
which may not necessarily be on the same side of the hole as the largest of the two
maximum stresses σ1,max found in Section 4.6 (see discussion in Section 4.7.3).

The differences between the shear force capacities gained from using the mean
stress criterion and from the tests are shown in Figure 4.3. All values of the shear
force capacity with the mean stress criterion are lower than those from the tests.

Table 4.5: The shear force capacity Vf with the mean stress criterion. The bold
numbers indicate in which part around the hole the largest of the two σ1,mean over
the specific distance x0 occurs, and thus the value used in the calculations.

Beam σ1,mean for the load P [MPa] Pf Vf

Left hole Right hole [kN] [kN]
Upper Lower Upper Lower
part part part part

d40 2.84 2.96 - - 23.82 18.62
d63 3.53 3.68 - - 19.18 14.79

d94.5 4.37 4.58 - - 15.44 11.69
d126 5.06 5.20 - - 13.57 10.08
d203 2.27 2.38 - - 29.57 22.46
d2x63 3.01 3.07 2.89 3.22 21.89 14.07
d2x126 4.05 4.10 3.92 4.40 16.03 9.39
d63x126 5.28 5.59 - - 12.60 9.36
d126x126 6.65 8.84 - - 7.97 5.92
d126x275 11.54 12.47 - - 5.65 3.82
d203x275 4.43 4.83 - - 14.60 10.87



36 CHAPTER 4. BEAM STRENGTH CALCULATIONS...

0 5 10 15 20 25
0

5

10

15

20

25

Shear capacity from tests [kN]

S
he

ar
 c

ap
ac

ity
, m

ea
n 

st
re

ss
 [k

N
]

Assumed crack fitted in the web
Assumed crack did not fit in the web

Figure 4.3: The relationship between Vf from tests and Vf with the mean stress
criterion, when assuming that the crack will occur in the part with the maximum
σ1,mean over the distance x0.

4.7.3 Discussion

Calculations were performed for both an assumed crack in the upper part of the hole
and in the lower part. For both these parts the crack was assumed to initiate in the
node with the maximum of the first principal stress σ1,max for the respective part.
The mean stress plots for cracks in the upper and the lower part differ somewhat and
the largest σ1,mean along the distance x0 of the two are not always at the same part
of the hole as the location of σ1,max around the hole, as would have been expected.
Hence, a decision considering in which part the assumed crack will initiate had to be
made, and the option was between the part with the largest σ1,max at the edge of the
hole, and the part with the largest σ1,mean at distance x0 from the hole, starting at
the node with σ1,max for that part. These two options only result in use of different
parts for the location of the assumed crack for four of the beams, and the differences
in the shear force capacity Vf that this causes are illustrated in Figure 4.4.
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Figure 4.4: The difference in shear force capacity from using different locations for
the assumed crack.

The differences between the shear force capacities Vf from the two alternative
crack positions are small and since the use of the location of the maximum σ1,mean

over length x0 gives slightly lower values for the shear capacity, this can be considered
the safe choice, and is therefore used in the remaining of this chapter.

4.8 The initial crack criterion

4.8.1 Method

When using the initial crack criterion to calculate the shear force capacity, the en-
ergy release rate G for crack growth can be expressed by Equation 2.17, repeated in
Equation 4.4.

G =
∂W

bw∂a
(4.4)

First, each beam was modeled with an initial crack with the length a0 = x0/2,
as described in Section 2.4.3. This was performed in ABAQUS by drawing the
crack with a partitioning tool, and then assigning a crack along this partition. This
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resulted in double nodes along the line. For the lower part of the hole for beam
d126x275 the length a0 did not fit into the web. Instead the longest possible length
in the same direction that fitted within the web was used. The cracks for all beams
initiated in the node with the maximum of the first principal stress σ1,max at the edge
of the hole in the upper or lower part, and grew in the direction perpendicular to the
edge of the hole. For this first crack the external work W1 was calculated and then
one node at the tip of the crack was opened to simulate crack growth. This resulted
in a new crack with length a0 + 2xa. The external work W2 for the new crack was
calculated, as well as the growth length Δa for the crack (see Section 2.4.3 and Fig-
ure 2.6). These values were then used to calculate the energy release rate G for each
beam with crack lengths according to Table 4.6 and from the specific applied load P :

G ≈ ΔW

bwΔa
=

W2 − W1

bw(a0 + 2xa − a0)
(4.5)

To calculate the failure load Pf the critical value of the energy release rate Gf

was used (Gf = 3494 J/m2 as mentioned in Section 2.5):

Gf = G(
P 2

f

P 2
) ⇒ Pf = P

√
Gf

G
(4.6)

All alternative positions for the cracks, which are the upper and lower part of
the hole and also the right or the left hole for the cases with two holes, were modeled
and tested in ABAQUS.

4.8.2 Results

The results are shown in Table 4.6. The bold areas indicate the part with the largest
of the two σ1,max at the edge of the hole, one occurring at each side of the hole. The
non-bold areas can be considered as alternatives to this area for the location of the
modeled crack. The relation between the shear force capacity Vf from the previous
tests and from the use of the initial crack criterion (the bold areas) is shown in
Figure 4.5.
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Table 4.6: The shear force capacity with the initial crack criterion. The bold areas
indicate where around the hole the maximum of the first principal stress σ1,max for
the load P occurs, and thus the values used for calculation the shear force capacity
Vf .

Beam Location a0 a0 + 2xa ΔW G Pf Vf

for load P
[mm] [mm] [J] [J/m2] [kN] [kN]

d40 upper part 7.1 8.1 0.31 38.75 22.32 17.45
d40 lower part 7.1 8.1 0.33 41.25 21.63 16.91
d63 upper part 7.1 8.1 0.52 65.00 17.23 13.29
d63 lower part 7.1 8.1 0.50 62.50 17.57 12.55

d94.5 upper part 7.1 8.1 0.78 97.50 14.07 10.65
d94.5 lower part 7.1 8.1 0.88 110.00 13.24 10.03
d126 upper part 7.1 8.1 1.15 143.75 11.59 8.61
d126 lower part 7.1 8.1 1.15 143.75 11.59 8.61
d203 upper part 7.1 8.1 0.21 26.25 27.11 20.59
d203 lower part 7.1 8.1 0.23 28.75 29.91 19.67

d2x63 upper right part 7.1 8.1 0.37 46.25 20.43 13.13
d2x63 lower right part 7.1 8.1 0.43 53.75 18.95 12.18
d2x63 upper left part 7.1 8.1 0.34 42.50 21.31 13.70
d2x63 lower left part 7.1 8.1 0.37 46.25 20.43 13.13
d2x126 upper right part 7.1 8.1 0.69 86.25 14.96 8.76
d2x126 lower right part 7.1 8.1 0.84 105.00 13.56 7.94
d2x126 upper left part 7.1 8.1 0.71 88.75 14.75 8.63
d2x126 lower left part 7.1 8.1 0.75 93.75 14.35 8.40
d63x126 upper part 7.1 8.1 1.18 147.50 11.44 8.50
d63x126 lower part 7.1 8.1 1.29 161.25 10.94 8.13
d126x126 upper part 7.1 8.1 1.72 215.00 9.47 7.04
d126x126 lower part 7.1 8.1 1.52 190.00 10.08 7.49
d126x275 upper part 7.1 8.1 2.39 298.75 8.04 5.43
d126x275 lower part 5.5 6.5 3.25 406.25 6.89 4.65
d203x275 upper part 7.1 8.1 0.86 107.50 13.40 9.98
d203x275 lower part 7.1 8.1 1.00 125.00 12.42 9.26
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Figure 4.5: The relation between the shear force capacity from tests and from the
use of the initial crack criterion, for cracks initiating in the node with the maximum
of the first principal stress.

4.8.3 Discussion

As for the mean stress criterion, the location of the assumed crack has to be decided
upon. It is also of interest to investigate if the choice between these alternative crack
locations has any significant impact on the shear force capacity. For most cases,
but not for all, the shear force capacity is larger in the area with the maximum
point stress at the edge of the hole, compared with alternative locations for the
crack. However, the difference is not large. The differences between the shear force
capacities calculated for the bold areas and for the alternative non-bold areas are
shown in Figure 4.6. Since the use of the position where the maximum point stress
at the edge of the hole occurs gives slightly lower values of the shear force capacity
for most beams, this position was used. For beam d126x275 the lengths a0 and
a0 + 2xa did not fit into the web on the lower side of the hole, and were therefore
instead set to 5.5 and 6.5 mm, respectively. This side of the beam gave a lower value
for the failure load Pf than the the upper side of the beam, and therefore it was
used.
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Figure 4.6: The influence from the location of the initial crack on the shear force
capacity. The options for the locations are between the part with the total maximum
point stress at the edge of the hole, or at the point with the local maximum point
stress.

4.9 Cracks that do not fit into the web

With the mean stress criterion the distances x0 over which to calculate the mean
stress did not fit into the web for all models. This problem occurred when the depth
of the hole had the same magnitude as the total web depth for the rectangular
holes. However, these holes are not accepted neither by Swelite’s nor Forestia’s
recommendations. Rectangular holes of this size are not common, and because of
this and since they are not recommended by the manufacturers, it is not considered
as a major problem if x0 does not fit into the web for these beams. However, a short
discussion regarding calculation solutions when this occurs is motivated.

For the beams where x0 did not fit into the web for the mean stress criterion, the
calculations in Section 4.7 were performed with the longest possible distance that
fitted into the web in the crack direction, hence, the distance from the edge of the
hole to the web to flange-joint in the chosen direction. This shorter x0 resulted in
lower values on the failure load and thus a lower shear force capacity, than if the
original x0 would have fitted into the web. One option for calculating the shear force
capacity with the mean stress criterion when x0 does not fit into the web is thus to
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use the longest possible values for x0 for these beams instead. This will however not
represent the actual shear force capacity accurately.

For the point stress criterion this problem does not exist, since the shear force
capacity is calculated for the maximum of the first principal stress σ1,max in one
single node. Another alternative for calculating the shear force capacity for the
beams where x0 did not fit into the web is therefore to use the point stress criterion
instead of the mean stress criterion. This is a relatively easy way to estimate the
shear force capacity Vf , and since the point stress criterion gives lower values on the
shear force capacity than the mean stress criterion, this will give value on the safe
side.

Yet another alternative would be to use the initial crack criterion for these mod-
els. Since the assumed crack length will be maximum x0/2 plus the length of an
element side, this crack is more likely to fit within the web, and the extent of this
problem will thus be reduced. In the calculations in Section 4.8 the assumed crack
a0 did not fit into the web for the lower side of the model d126x275. When this
occurred the calculations were instead performed with the longest possible crack.
Since the original assumed crack a0 was half the size of x0, the difference that the
shorter a0 makes is smaller, than the difference a shorter x0 makes. The use of the
initial crack criterion for the models where the original x0 does not fit into the web
can thus be motivated, but the calculations with the initial crack criterion are far
more complicated.

Another option is to still use the mean stress criterion, but manipulating the
σmean/x plots (see Appendix B) and thus gain a value for the distance x0, though
somewhat modified. When calculating the mean stress over the distance x, first of
all the maximum stress at the distance x is calculated. With this modified mean
stress method, the maximum stress plots is elongated by dragging the lowest value
horizontally, and thus setting the maximum stress at all following distances from
the edge of the hole to the value at the longest possible distance in the web from
the edge along the assumed crack path. This modified plot is then integrated and
each value of the stress is divided by the distance x, just as in previous calculations.



Chapter 5

Evaluation and new calculation
method

5.1 Evaluation of the calculation criteria

Figure 5.1 below shows a comparison between the three criteria used in the cal-
culations and the results from the tests. The figure also includes the relationship
between the characteristic shear capacity, Vk, from tests and from using Swelite’s
equation, see Section 2.2.2.
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Figure 5.1: The ratio Vtheory/Vtest for the three criteria used and from Swelite’s
equation. For the equation, the characteristic values for both the theory and the
tests have been used.
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Since the material used in the models may not correspond to the material used
in the previous tests, the ratio between the largest and smallest Vtheory/Vtest for the
different theories is of interest, and not how close Vtheory/Vtest is to 1.

With the exception of the two models d126x126 and d126x275, for which the
crack length x0 did not fit into the web, the use of the mean stress criterion gave
a small ratio of approximately 0.96/0.78 = 1.23 for Vtheory/Vtest. The initial crack
criterion also gave a small Vtheory/Vtest ratio, approximately 0.83/0.68 = 1.22. The
point stress criterion gives the highest value of the same ratio among the three
criteria, approximately 0.76/0.38 = 2.00. The equation gave the largest Vtheory/Vtest

ratio, approximately 1.39/0.65 = 2.14 and can thus be considered as not a suitable
way of calculating the reduced shear force capacity for a beam with a hole in the web,
especially since three of these characteristic values are lower than the corresponding
characteristic values from the tests (see Section 5.2).

If only taking the cases for which the assumed crack fitted within the web into
consideration, the mean stress criterion or the initial crack criterion are obviously
the best choices for estimating the beams’ shear force capacity. Figure 5.2 shows
the calculated shear force capacities from the use of the three criteria and from the
tests. The figure shows that the point stress criterion gives values of the shear force
capacity that heavily differs from the shear force capacity from the tests, especially
for the smaller holes. For the beam d40 with a hole diameter of 40 mm, the calculated
shear force capacity from using the point stress criterion is less than half of the shear
force capacity from tests. The point stress criterion is thus severely underestimating
the true shear force capacity for that beam.
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Figure 5.2: The shear force capacity calculated with the three criteria and from the
tests.
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Another way to visualize the difference in the shear force capacity between the
three criteria is to summarize the Figures 4.2, 4.3 and 4.5 into Figure 5.3.
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Figure 5.3: The relation between the shear force capacity from the tests and the shear
force capacity with the three criteria.

From the figures in this section it is clear that among the three criteria, the
mean stress criterion or the initial crack criterion are to be preferred, since the
point stress criterion gives the largest span on the ratio Vtheory/Vtest. A small span
would indicate that the theory could be used for calculating the reduced shear force
capacity without severely underestimating the strength of some beams. From the
figures it is also clear that the mean stress criterion and the initial crack criterion gave
fairly similar results. However, the mean stress criterion is a far more easy method
to use, since no actual crack need to be modeled. For the initial crack criterion, two
calculations are also needed for each beam to obtain W1 and W2, while the mean
stress criterion only needs one calculation for each beam. The initial crack criterion
is hence far more time consuming than the mean stress criterion. One advantage
with the initial crack criterion is however that the problem with cracks that do not
fit into the web will not occur to the same extent as it does for the mean stress
criterion, as mentioned in Section 4.9.
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5.2 Evaluation of current calculation method

5.2.1 Method

The calculation method used by Swelite and Forestia, for calculating the reduced
shear force capacity for I-beams with holes in the web was mentioned in Section 2.2
and the equations used will be repeated here for convenience.

Vk,hole = Vk · k (5.1)

k =
H − hf − 0.9d

H − hf

(5.2)

The reduced characteristic shear capacity, Vk,hole, is calculated from the charac-
teristic shear capacity for the beam without any hole, Vk, by multiplying it with the
reduction factor k. The factor k is based on the total beam depth H , the depth of
the flanges, hf , and the diameter of the hole, d.

In the study that contained the results from the test [14], that have been used for
comparison throughout this thesis, the shear force capacities for the tested beams
were compared to the shear force capacities from the equations. For this comparison,
the mean values of the shear force capacities from the tests for each type of beam
were converted into the characteristic shear force capacities Vk,test, by use of the
standard deviation. These values were compared to the characteristic shear force
capacities calculated with Equation 5.1 and Equation 5.2 using the characteristic
shear force capacity for a beam of type H 220 without any hole, Vk, given by Swelite
[15].

5.2.2 Results

Figure 5.4 shows the comparison between the characteristic shear force capacities
from the tests, Vk,test and the characteristic shear force capacities from the use of
the equations recommended by Swelite and Forestia, Vk,hole.
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Figure 5.4: The ratio between the characteristic shear force capacity from the tests,
Vk,test and from the equations, Vk,hole.

5.2.3 Discussion

From Figure 5.4 it is clear that for three beams the characteristic shear force capacity
from the tests, Vk,test, was lower than the characteristic shear force capacity from the
equations, Vk,equ. Since the beams used in the test were manufactured by Swelite (at
the time named Masonite AB) [14], and are thus comparable with the results from
the equations, it is obvious that Equation 5.1 and Equation 5.2 are not suitable
for calculating the reduced shear force capacity for all beams used. The beams
that had a ratio Vk,test/Vk,equ smaller than 1 was d63, d126x275 and d203x275. The
beams d126x275 and d203x275 do not fulfill Swelite’s or Forestia’s recommended
dimensions (Section 2.2), however, the beam d63 fulfills the requirements from both
manufacturers, and one would therefore expect that the shear force capacity from
the tests for this beam would be larger than the calculated reduced shear force
capacity, which is not the case.

From Figure 5.4 it is also clear that for some beams the calculation method from
Swelite and Forestia severely underestimates the shear force capacity. For example,
the ratio Vk,test/Vk,equ is almost 1.6 for the beams d126 and d63x126 and almost 1.4
for the beam d2x126. From 5.4 and Figure 5.1 the conclusion can be drawn that
the method recommended by Swelite and Forestia for calculating the reduced shear
force capacity is not very suitable, and efforts to develop a new calculation method
based on fracture mechanics are motivated.
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5.3 Beam parameter study

The parameter study was based on the mean stress criterion, since this method
resulted in a short span for the ratio Vtheory/Vtest, and since this is a fairly easy
method to use, as was discussed in Section 5.1. The parameters investigated are the
material parameters E, Gf and ft. The reason for this additional parameter study
is that the values of these parameters in the previous tests are not known. Because
of this the used values of these parameters in the calculations in Chapter 4 may not
be near the values for the real beams used in the test. Therefore it is of interest to
investigate how much a change in these values influence the calculations.

5.3.1 Method

The influence from the Young’s modulus E, the fracture energy Gf and the tensile
strength ft on the shear force capacity Vf was investigated. A change in any of
these parameters will result in a change in the distance x0, over which to calculate
the mean stress, and thus a change in the magnitude of the failure load Pf and
ultimately the shear force capacity Vf . By including these material parameters in a
dimensionless value X , see Equation 5.3, they can be compared to the shear force
capacity for different beams with a span of tensile strengths.

X =
hw

EGf

f2
t

(5.3)

where hw is the depth of the web.
The span of X includes variations of E between 3 000 MPa and 16 000 MPa, with

all other values kept constant and given by Chapter 2. By instead changing only Gf

instead of E, Gf will vary between 1900 J/m2 and 10 000 J/m2. By changing only
ft, ft will vary between 18 and 41 MPa. For some beams which had a diameter of
the hole of the same magnitude as the depth of the web, this could not be calculated,
since the assumed crack lengths did not fit into the web. The beams for which x0 in
Chapter 4 did not fit into the web were therefore excluded from the calculations in
this parameter study. The value X for the previously mentioned span was plotted
against Y , see Equation 5.4, which included the shear force capacity of the beam
Vf , the thickness of the web bw, the depth of the web hw and the tensile strength of
the web material, ft.

Y =
Vf

bwhwft

(5.4)
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5.3.2 Results

For all the 11 beams studied lower part of the hole will require a lower load for
fracture to initiate, and it is therefore reasonable to focus only on assumed cracks
in the lower part of the beams.

Figure 5.5 shows the relationship between X and Y for the beam depth 220 mm,
and thus the influence from different material parameters on the resulting shear
force capacity Vf . By using Figure 5.5 the shear force capacity for beams with the
same geometries and various isotropic web materials can be estimated.
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Figure 5.5: The influence of the material parameters E, Gf and ft on the shear force
capacity Vf of different beams with depth of 220 mm.

Figure 5.6 shows the relationship between X and Y for the beams with a depth
H of 500 mm. Figure 5.7 shows Figure 5.5 and Figure 5.6 combined in one figure.
Since the depth H is included in the X variable the X-axis will not have the same
limits for the two figures 5.5 and 5.6.
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Figure 5.6: The influence of the material parameters E, Gf and ft on the shear force
capacity Vf of beams with the depth 500 mm.
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Figure 5.7: The influence of the material parameters E, Gf and ft on the shear force
capacity Vf of different beams.
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5.4 New approximate strength equation

Since the shear strength equation recommended by Swelite and Forestia was found
to be poor earlier in this chapter a new approximate equation for simple calculation
of the reduced shear force capacity for beams with holes in the web will be suggested
and discussed. In the evaluation of the fracture mechanics theories in Section 5.1
the mean stress criterion and the initial crack criterion were found to be suitable for
calculating the shear force capacities of beams with holes in the web. However, the
mean stress criterion is easier to use than the initial crack criterion, and therefore
a new recommended method would be to use the mean stress criterion. A new
calculation method could be based on the plots obtained in the parameter study
performed in Section 5.3, see Figure 5.7, since these plots are based on the mean
stress criterion. By using Figure 5.7 for beams with similar geometries and hole
diameters as the tested beams, the shear force capacity Vk,hole for I-beams with
various isotropic web materials can be read from the plot, if the material parameters
are known. Note however, that these plots have only been performed for a few beams,
and further research is needed to obtain more general plots. Furthermore, the plots
are only valid for the current load situation (see Figure 4.1), and this load situation
does not only result in a shear force acting in the hole, but also a bending moment.

Another way to use the mean stress criterion as a base for calculating Vk,hole is to
use an equation fitted to the plots in Figure 5.7. This was performed for the beams
with one circular hole by applying a function with five unknown coefficients, shown
in Equation 5.5, where A1, A2, A3, A4 and A5 are the unknown coefficients.

Vk,hole

hwbwft

= (A1 − A2(
d

hw

) + A2(
d

hw

)2 + A4(
h2

f

bwl1
))(

hw

EGf /f 2
t

)A5 (5.5)

where Vk,hole = the shear force capacity, hw = the depth of the web, bw = the
thickness of the web, ft = the tensile strength of the web material, d = the di-
ameter of the hole, hf = the depth of the flange, lf = the moment arm (220 mm
for the beam with depth 220 mm and 500 mm for the beam with depth 500 mm),
E = Young’s modulus for the web material, Gf = the fracture energy of the web
material.

The coefficients A1−A5 were determined by means of the least square method.
The shear strength accoring to Equation 5.5 is fitted to the shear strength values of
the mean stress method by minimizing the square of the deviation in shear strength.
More exactly, the coefficients A1 − A5 are chosen so that the least square function
Q = Q(A1, A2, A3, A4, A5) is minimized:

Q =

5∑
i=1

10∑
j=1

(Y (ij , Xi,j)−(A1−A2(
d

hw

)+A2(
d

hw

)2+A4(
h2

f

bwl1
))(

hw

EGf /f 2
t

)A5)2 (5.6)
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where Y (ij , Xi,j) is the shear strength value Vk,hole/(hwbwft) according to the mean
stress criterion for beams of type i at value X (hw/EGf/f

2
t ).

The five types of beams considered in the least square curve fitting were d40,
d63, d94.5, d126 and d203. These beams are the beams with a single circular hole.
For each type of beam ten values of (hw/EGf/f 2

t ) were considered. For i =1, 2, 3
and 4, i. e. for beams of types d40, d63, d94.5 and d126 these ten values were:

[
2.7667 3.6137 4.5736 5.6464 6.8322 8.1308 9.5425 11.0670 12.7045 14.4548

]
and for i =5, i. e. for the beams of type d203, the ten values were:

[
8.9151 11.6442 14.7372 18.1940 22.0148 26.1994 30.7479 35.6603 40.9366 46.5767

]
The corresponding 5·10 = 50 values of Y (ij , Xi,j) were taken from the parameter

study (see Figure 5.7):

Y (ij, Xi,j) =⎡
⎢⎢⎢⎢⎣

0.7890 0.7233 0.6628 0.6158 0.5750 0.5441 0.5163 0.4926 0.4747 0.4568
0.6288 0.5691 0.5243 0.4887 0.4611 0.4397 0.4212 0.4059 0.3944 0.3843
0.4944 0.4457 0.4114 0.3862 0.3669 0.3530 0.3414 0.3311 0.3244 0.3174
− 0.3822 0.3534 0.3330 0.3177 0.3065 0.2970 0.2896 0.2839 0.2788

0.2707 0.2544 0.2420 0.2338 0.2270 0.2224 0.2189 0.2155 0.2130 0.2113

⎤
⎥⎥⎥⎥⎦

(5.7)

To find the values of the coefficients A1−A5 that minimizes the function Q, the
function fminsearch in MATLAB was used. The function fminsearch is an algoritm
for unconstrained non-linear optimization.

The values of the unknown coefficients obtained by minimizing Equation 5.6 are
shown in Equation 5.8. This resulted in a rather complex equation for calculating
the reduced shear force capacity for a beam with a hole, Vk,hole (Equation 5.9).

A1 = 1.0125

A2 = −1.7008

A3 = 0.7837

A4 = 0.3823

A5 = −0.2976

(5.8)

Vk,hole

hwbwft

= (1.0125 − 1.7008(
d

hw

) + 0.7837(
d

hw

)2 + 0.3823(
h2

f

bw l1
)(

hw

EGf/f 2
t

)−0.2976

(5.9)
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Equation 5.9 includes the material parameters that were included also in the
parameter study and is based on the beams with one circular hole. The equation
is not verified and is at this stage not recommended for design calculations. As for
the plots in the parameter study, this equation is only valid for the the current load
situation, and can not be used in a general case. Figure 5.8 shows the results from
the parameter study compared to the results from using Equation 5.9.
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Figure 5.8: The shear force capacity Vf from the parameter study and from using
the new Equation 5.9.
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Chapter 6

Conclusions

6.1 Concluding remarks

The work with this master’s thesis has resulted in conclusions that will be discussed
in this section.

By studying the angles to the location of the maximum of the first principal stress
at the edge of the hole and three and eight nodes outside the hole (approximately
three and eight mm outside the hole respectively), it was found that this angle can
vary significantly from 45 ◦. It was also found that the angles for the outer paths
differ very little from the angle at the edge of the hole, and the conclusion that
a crack will grow in an angle perpendicular to the edge of the hole could thus be
drawn.

In the calculations of the shear force capacity for beams with holes in the web,
three criteria based on fracture mechanics theory were used. By comparing the
ratio Vtheory/Vtest for the three criteria, where Vtest is the shear force capacity from a
previous test study of the same beam geometries and load cases, it was found that
the mean stress criterion and the initial crack criterion are suitable for calculating
the shear force capacity of beams with holes. The point stress criterion however was
not suitable since this method severely underestimated the shear force capacity of
some beams.

By evaluating the current method for calculating the reduced shear force capacity
for beams with holes in the web used by Swelite and Forestia, it was found that this
method does not give values corresponding well with the shear force capacity for
the tested beams. For three of the types of beams studied the characteristic shear
force capacity calculated by the current method was larger than the characteristic
shear force capacity from the tests. This method also underestimated the shear force
capacity for some beams considerably. The calculation method used by Swelite and
Forestia does accordingly not seem very accurate and suitable for calculating the
shear force capacity for beams with holes. An attempt was made to develop an
alternative shear strength equation. This equation shows how the size of a circular
hole and how the different material property parameters are predicted to affect
the shear strength. The alternative equation can, however, at the present stage of
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knowledge not be recommended for use in design. Further work on verification and
generalization is needed.

6.2 Future work

During the work with this thesis, some areas that need further investigation have
sprung to mind, and these are mentioned in this section.

• The calculations in this study have been compared to previous tests including
11 beam geometries. The mean stress method needs to be verified further by
comparison to more empirical results.

• The new calculation method suggested in this study was based on the results
from primarily the beam height 220 mm. A further development of these cal-
culation methods based on more beam heights is needed as well as verification
of the equations.

• A more general calculation method, that is valid for various load cases is
needed.
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Appendix A

Stress distribution in beams

This appendix includes figures showing the distribution of the maximum of the first
principal stress in the beams from Chapter 3. The load cases are described by the
notation (N,V,M) where N = the normal force, V = the shear force and M = the
bending moment. The units of (N,V,M) are [N, N, Nmm] and the unit of the first
principal stress in the colorbar is [MPa].

Figure A.1: Load case (N,V,M) = (0, -1, -990).
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Figure A.2: Load case (N,V,M) = (0, -1, -660).

Figure A.3: Load case (N,V,M) = (0, -3, -1320).

Figure A.4: Load case (N,V,M) = (0, -3, -770).
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Figure A.5: Load case (N,V,M) = (0, -3, -660).

Figure A.6: Load case (N,V,M) = (1, -1, -990).

Figure A.7: Load case (N,V,M) = (1, -1, -660).
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Figure A.8: Load case (N,V,M) = (3, -3, -1320).

Figure A.9: Load case (N,V,M) = (1, -1, -330).

Figure A.10: Load case (N,V,M) = (3, -3, -770).
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Figure A.11: Load case (N,V,M) = (3, -3, -660).

Figure A.12: Load case (N,V,M) = (1, -3, -1320).

Figure A.13: Load case (N,V,M) = (1, -3, -770).
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Figure A.14: Load case (N,V,M) = (1, -3, -660).

Figure A.15: Load case (N,V,M) = (3, -1, -990).

Figure A.16: Load case (N,V,M) = (3, -1, -660).
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Figure A.17: Load case (N,V,M) = (3, -1, -330).
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Appendix B

Mean stress plots

This appendix includes plots showing the mean value of the first principal stress
over the distance x from the edge of the hole, in the assumed crack direction.
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